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Joint probability distributions of photon polarizationcorrelationsare computed, as
well as those corresponding to the cases when only one of the photon’s polarization
is measured in e+e− annihilation, inflight, in QED. This provides adynamical, rather
than a kinematical, description of photon polarization correlations as stemming from
the ever precise and realistic QED theory. Such computations may be relevant to recent
and future experiments involved in testing Bell-like inequalities as described.
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1. INTRODUCTION

The purpose of this paper is to derive the explicit joint probability distri-
butions of photon (γ γ ) polarizationcorrelations in e+e− annihilation, inflight
(Manoukian and Ungkitchanukit, 1994), in QED, as well as to obtain the corre-
sponding probabilities when only one of the photon’s polarization is measured.
This provides clear cutdynamical, rather than kinematical, descriptions of photon
polarizations correlations as follow directly from this monumental and experimen-
tally reliable QED theory. Particle correlations have been systematically studied
earlier (e.g., Manoukian, 1992, 1994, 1998; Manoukian and Ungkitchanukit, 1994)
emphasizing, however, different experimental situations and aspects. Polarizations
phenomenae were studied many years ago (McMaster, 1961,) we are, however,
interested in correlations aspects that have been quite important experimentally in
recent years (Clauser and Horne, 1974; Clauser and Shimoney, 1978; Fry, 1995;
Selleri, 1988) in the light of the foundations of quantum physics vis-`a-vis Bell-like
inequalities. Two types of collisions are considered for e+e− annihilation in flight
in the c.m. (center of mass) motion. The first one in which a e+ and a e− in the c.m.,
initially prepared to be moving along a specific axis, annihilate each other and two
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photons are observed to be moving along a given specific axis. Given that this
process has occurred, we compute the conditional joint probability distributions
of photon polarizations as well as the probabilities corresponding to the measure-
ment of only one of the photon’s polarization. The second one is involved with
all repeated experiments corresponding to all orientations of the axis of motion
of e+e− pairs in the c.m. initially prepared with the same speeds, and a pair of
photons is observed moving along a given axis in each case after the annihilation
process. Given that these collisions have accurred, we compute the conditional
probabilities of photon polarizations correlations mentioned above. In this latter
case we must average over the initial orientations of the axis along which a e+e−

pair may initially move before annihilation occurs. With the explicit expressions
for the probabilities derived from this quantum dynamical analysis, we finally
show a clear violation of the relevant Bell-like inequality (Clauser and Horne,
1974; Clauser and Shimoney, 1978; Fry, 1995; Selleri, 1988) as a function of the
speed of e+ (or of e−). Our convention for the metric is[gµν ] = diag[−1,1,1,1].

2. COMPUTATIONS OF THE PROBABILITY DISTRIBUTIONS

The transition probability of e+ (p1) e−(p2) → γ (k1) γ (k2) to the leading
order in the fine-structure constantα is, up to an unimportant multiplicative factor
for the problem at hand, given by (e.g., Itzykson and Zuber, 1980; Sokolovet al.,
1988)

Prob∝
[

1

4

(k1k2)2

(p1k1)(p1k2)
− (ε1λ · ε2λ′ )

2

]
(1)

where

ε
µ

1λ =
(
δµν −

p1νkµ1

p1k1

)
eν1(λ), k1e1(λ) = 0 (2)

ε
µ

2λ′ =
(
δµν −

p1νkµ2
p1k2

)
eν2(λ′), k2e2(λ′) = 0 (3)

eν1,2(λ) denote the polarization vectors of the photons satisfying the completeness
relation ∑

λ

eµi (λ)eνi (λ)− gµν − kµi k̄νi + k̄µi kνi
ki ki

(4)

(no sum overi ), wherek = (k0, Ek), k̄ = (k0,−Ek). We note thatενiλ are invariant
under the gauge transformationseνi (λ)→ eνi (λ)+ kνi bλ(ki ) for arbitrarybλ(ki ).

In the c.m. of a pair e+e−

Ep2 = −Ep1 ≡ −Ep, Ek2 = −Ek1 ≡ −Ek, p0
1 = p0

2 = k0
1 = k0

2 ≡ p0

k0 = |Ek|, p0 =
√
Ep2+m2

}
(5)
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Fig. 1. In this figureEk lies in thex–zplane andEp is along the
z-axis. The polarizations vectorsEe1(λ1), Ee1(λ2) are orthog-
onal to each other and are orthogonal toEk. The line segment
AB, of length | cosχ1|, lies in thex–z plane. By rotating
the coordinate system c.w. about thez-axis, by an angleφ,
the vectorsEk, Ee1(λ1), Ee1(λ2) will have general orientations
in the resulting coordinate system.

In Fig. 1 we show how to introduce the polarizationeµ1 (λ) = (0, Ee1(λ)) in
reference to the vectorkµ. If Ek is chosen to lie in thex–z plane, then

Ek : |Ek|(sinθ , 0, cosθ ) (6)

and from the figure, withEe1(λ) ≡ Ee1,

Ee1 : (− cosθ cosχ1, sinχ1, sinθ cosχ1) (7)

where, here,Ep = |Ep|(0, 0, 1). For a general orientation ofEk and Ee1, we must rotate
thex–y–z coordinate system c.w. (clockwise) about thez-axis by an angleφ. This
is accomplished by the rotation matrixR with matrix elements:

Ril = δi l + ε i j l p j

|p| sinφ +
(
δi l − pi pl

|Ep|2
)

(cosφ − 1) (8)

giving

Ek = |Ek|(cosφ sinθ , sinφ, sinθ , cosθ ) (9)

as expected, and

Ee1 = (− cosθ cosχ1 cosφ − sinχ1 sinφ, sinχ1

× cosφ − cosθ cosχ1 sinφ, sinθ cosχ1) (10)
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in the resulting coordinate system. A similar expression forEe2(λ′) ≡ Ee2 is ob-
tained by replacingχ1 by χ2. With Ee1 ≡ Ee1(λ1), Ee1(λ2) is obtained fromEe1 by the
substitutionχ1→ χ1+ π/2.

In the c.m. of e+e−, (1) may be rewritten in the convenient form

Prob∝
[

1

4

(k1k2)2

(p1k1)(p1k2)
−
(
Ee1 · Ee2+ Ee1 · Ep Ee2 · Ep(k1k2)

(p1k1)(p1k2)

)2
]

(11)

We treat two processes of annihilation associated with the relative probability
given in (11).

2.1. Process 1

We consider the annihilation of e+e− pairs in flight in the c.m. (located at the
origin of the coordinate system) initially prepared to be moving along thez-axis,
as in the figure, each moving with speedv = βc, prior to their annihilation into
pairs of photons, and place detectors for the latter at opposite ends of thex-axis.

Using the scalar products

Eei · Ep = |Ep| sinθ cosχi , Ep · Ek1 = |Ep|Ek| cosθ = −Ep · Ek2 (12)

we obtain by a direct evaluation of (11)

Prob∝ [1− 4(1− β2) cosχ1 cosχ2(cos(χ1− χ2)− 2 cosχ1 cosχ2)]

(1− β2 cos2 θ )2

− 4(1− β2)2 cos2 χ1 cos2 χ2

(1− β2 cos2 θ )2
− [cos(χ1− χ2)− 2 cosχ1 cosχ2]2

(13)

whereβ = |Ep|/p0 is the speed of e+ (or of e−) divided by the speed of light, and
θ is the angle betweenEk and Ep. We note that the anglesχ1, χ2 have given fixed
values when the vectorEk is made to rotate in the coordinate system.

Sinceθ is a continuous variable, we may integrate the expression in (13) over
θ fromπ/2− δ toπ/2+ δ and then rigorously take the limitδ→ 0 in evaluating
the normalized probabilities in question. Theφ-integral, here, is not important in
evaluating these normalized probabilities since it leads to overall multiplicative
factors that cancel out in the final expressions.

Upon using the integrals

π
2+δ∫

π
2−δ

sinθ dθ

(1− β2 cos2 θ )
= 1

β
ln

(
1+ β sinδ

1− β sinδ

)
(14)
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π
2+δ∫

π
2−δ

sinθ dθ

(1− β2 cos2 θ )2
= 1

β

[
β sinδ

1− β2 sin2 δ
+ 1

2
ln

(
1+ β sinδ

1− β sinδ

)]
(15)

we obtain from (13)
π
2+δ∫

π
2−δ

sinθ dθ Prob

∝
{

[1− 4(1− β2) cosχ1 cosχ2(cos(χ1− χ2)− 2 cosχ1 cosχ2)]

β

× ln

(
1+ β sinδ

1− β sinδ

)
− 4(1− β2)2 cos2 χ1 cos2 χ2

[
sinδ

1− β2 sin2 δ
+ 1

2β
ln

(
1+ β sinδ

1− β sinδ

)]
− 2 sinδ[cos(χ1− χ2)− 2 cosχ1 cosχ2]2

}
≡ Fδ(χ1, χ2) (16)

To normalize the expression in (16), we have to sumFδ(χ1, χ2) over the
polarizations directions specified by the pairs of angles:

(χ1, χ2),
(
χ1+ π

2
, χ2

)
,
(
χ1, χ2+ π

2

)
,
(
χ1+ π

2
, χ2+ π

2

)
(17)

That is, we have to find the normalization factor

Nδ = Fδ(χ1, χ2)+ Fδ
(
χ1+ π

2
, χ2

)
+Fδ

(
χ1, χ2+ π

2

)
+ Fδ

(
χ1+ π

2
, χ2+ π

2

)
(18)

The latter works out to be

Nδ = [4+ 4(1− β2)− 2(1− β2)2]
1

β
ln

(
1+ β sinδ

1− β sinδ

)
−4(1− β2)2 sinδ

1− β2 sin2 δ
− 4 sinδ (19)

Therefore, given that the process has occurred as described above, with two
photons moving (back-to-back) along thex-axis, the conditional joint probability
of the photon polarizations, specified by the anglesχ1, χ2, is rigorously given by

P(χ1, χ2) = lim
δ→0

Fδ(χ1, χ2)

Nδ
(20)
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For all 06β ≤ 1, we use the limit

1

β
ln

(
1+ β sinδ

1− β sinδ

)
∼
δ→0

2δ (21)

to obtain from (16), (19), and (20),

P(χ1, χ2) = 1− (cos(χ1− χ2)− 2β2 cosχ1 cosχ2)2

2[1+ 2β2(1− β2)]
(22)

for all 0≤ β ≤ 1.
If only one of the polarizations is measured, then we have to evaluate

Fδ(χ1, χ2)+ Fδ(χ1, χ2+ π/2) and Fδ(χ1, χ2)+ Fδ(χ1+ π/2,χ2).

To this end, (16) gives

Fδ(χ1, χ2)+ Fδ(χ1, χ2+ π/2)= [2+ 2(1− β2)(1− 3β2) cos2 χ1]

× 1

β
ln

(
1+ β sinδ

1− β sinδ

)
−4(1− β2)2 sinδ

1− β2 sin2 δ
cos2 χ1− 2 sinδ (23)

Fδ(χ1, χ2)+ Fδ(χ1+ π/2,χ2) = [2+ 2(1− β4) cos2 χ2]

× 1

β
ln

(
1+ β sinδ

1− β sinδ

)
−4(1− β2)2 sinδ

1− β2 sin2 δ
cos2 χ2− 2 sinδ (24)

That is, the conditional probabilities associated with the measurement of only
of the polarizations are given by

P(χ1, –)= lim
δ→0

Fδ(χ1, χ2)+ Fδ(χ1, χ2+ π/2)

Nδ
(25)

P(–,χ2) = lim
δ→0

Fδ(χ1, χ2)+ Fδ(χ1+ π/2,χ2)

Nδ
(26)

From (23)–(26), and (18), these work out to be simply given by

P(χ1, –)= 1+ 4β2(1− β2)+ cos2 χ1

2[1+ 2β2(1− β2)]
(27)

P(–,χ2) = 1+ 4β2(1− β2)+ cos2 χ2

2[1+ 2β2(1− β2)]
(28)

for all 0≤ β ≤ 1, and are, respectively,dependentonχ1, χ2.
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We note the important statistical property that

P(χ1, χ2) 6= P(χ1, –)P(–,χ2) (29)

in general.
In the notation of Local Hidden Variables (LHV) theory (Clauser and Horne,

1974; Clauser and Shimoney, 1978; Fry, 1995; Selleri, 1988), we have the identi-
fications

P(χ1, χ2) = P12(a1, a2)

P12(∞,∞)
(30)

P(χ1, –)= P12(a1,∞)

P12(∞,∞)
(31)

P(–,χ2) = P12(∞, a2)

P12(∞,∞)
(32)

Defining

S= P(χ1, χ2)− P(χ1, χ ′2)+ P(χ ′1, χ2)

+ P(χ ′1, χ ′2)− P(χ ′1, –)− P(–,χ2) (33)

for four anglesχ1, χ2, χ ′1, χ ′2, LHV theory gives the Bell-like bound (Clauser and
Horne, 1974; Clauser and Shimoney, 1978):

−16 S60 (34)

It is sufficient to realize one experimental situation that violates the bounds
in (34).

For example, forχ1 = 0◦, χ2 = 67◦, χ ′1 = 135◦, χ ′2 = 23◦, (22), (27), (28),
as obtained from QED, giveS= 0.207 forβ = 0 that violates (34) from above.
For χ1 = 0◦, χ2 = 23◦, χ ′1 = 45◦, χ ′2 = 67◦, we obtainS= −1.207 for β = 0
violating (34) from below. Both bounds are violated for allβ ≤ 0.2 for these same
angles, respectively.

2.2. Process 2

Here we put the two detectors on opposite sides of thez-axis. We consider
all repeated experiments with pairs e+e− produced in flight in the c.m. (located at
the origin), each particle moving with speedv = βc, corresponding to all possible
orientations of the axis along which a given pair moves. Here we must average
over all anglesθ , φ of the vectorEp, with Ek along thez-axis.

In the present case

Ek = |Ek|(0, 0, 1) (35)

Ep = |Ep|(cosφ sinθ , sinφ sinθ , cosθ ) (36)



P1: FMU

International Journal of Theoretical Physics [ijtp] pp975-ijtp-472194 October 7, 2003 19:47 Style file version May 30th, 2002

1762 Yongram and Manoukian

Ee1 = (− cosχ1, sinχ1, 0) (37)

Ee2 = (− cosχ2, sinχ2, 0) (38)

(see (7)) and

Ee1 · Ep = −|Ep| sinθ cos(φ + χ1) (39)

Ee2 · Ep = −|Ep| sinθ cos(φ + χ2) (40)

thus obtaining for (11)

Prob∝ (1− 4(1− β2) cos(φ + χ1) cos(φ + χ2)[cos(χ1 − χ2)− 2 cos(φ + χ1) cos(φ + χ2)])

(1− β2 cos2 θ )

−4(1− β2)2 cos2(φ + χ1) cos2(φ + χ2)

(1− β2 cos2 θ )2

− cos2(χ1 − χ2)+ 4 cos(χ1 − χ2) cos(φ + χ1) cos(φ + χ2)

− 4 cos2(φ + χ1) cos2(φ + χ2) (41)

Upon using the integrals

2π∫
0

dφ cos(φ + χ1) cos(φ + χ2) = π cos(χ1− χ2) (42)

2π∫
0

dφ cos2(φ + χ1) cos2(φ + χ2) = π

4
[1+ 2 cos2(χ1− χ2)] (43)

and
π∫

0

dθ sinθ

(1− β2 cos2 θ )
= 1

β
ln

(
1+ β
1− β

)
(44)

π∫
0

dθ sinθ

(1− β2 cos2 θ )2
= 1

β

[
β

1− β2
+ 1

2
ln

(
1+ β
1− β

)]
(45)

with the latter two deduced from (14), (15) by replacingδ by π/2, we obtain∫
dÄProb∝ [ A(β)+ B(β) cos2(χ1− χ2)] (46)

where

A(β) = [4(2− β2)− (1− β2)2]

4β
ln

(
1+ β
1− β

)
− 3

2
+ β

2

2
(47)
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B(β) = −(1− β2)

[
1+ (1− β2)

2β
ln

(
1+ β
1− β

)]
(48)

and for the normalization factor we have upon summing over the set in (17),

N(β) = [4(2− β2)− 2(1− β2)2]

β
ln

(
1+ β
1− β

)
− 8+ 4β2

≡ 2[2A(β)+ B(β)] (49)

Accordingly, for the joint conditional probabilities, we have

Pβ(χ1, χ2) = A(β)+ B(β) cos2(χ1− χ2)

2[2A(β)+ B(β)]
(50)

given that the two photons have emerged (back-to-back) along thez-axis.
For the measurement of only one of the polarizations, (50) leads to

Pβ(χ1, –)= A(β)+ B(β)

2[2A(β)+ B(β)]
= 1

2
= Pβ(−, χ2) (51)

for all 06β 61, and the latter are, respectively,independentof χ1, χ2.
Again we have the important statistical property

Pβ(χ1, χ2) 6= Pβ(χ1, –)Pβ(–,χ2) (52)

in general. It is interesting to note that an equality in (52) holds in the extreme
relativistic caseβ → 1, where each side is equal to 1/4.

Only in the limiting caseβ → 0, the joint probability in (50) for this process
coincides with that in (22) for the first process.

As in (33), we define

Sβ = Pβ(χ1, χ2)− Pβ(χ1, χ ′2)+ Pβ(χ ′1, χ2)

+Pβ(χ ′1, χ ′2)− Pβ(χ ′1, –)− Pβ(–,χ2) (53)

for four anglesχ1, χ2, χ ′1, χ ′2, and LHV theory gives (Clauser and Horne, 1974;
Clauser and Shimoney, 1978)

−16 Sβ 60 (54)

For β → 1, an equality holds in (52),Sβ →−1/2, and this process, to be
useful for testing the violation of (54), should not be conducted at very high speeds.
Forχ1 = 0◦, χ2 = 67◦, χ ′1 = 135◦, χ ′2 = 23◦, we haveSβ = 0.120, 0.184, 0.201,
0.207 for β = 0.2, 0.1, 0.05, 0.01, respectively, violating (54) from above. For
χ1 = 0◦, χ2 = 23◦, χ ′1 = 45◦, χ ′2 = 67◦, we haveSβ = −1.12,−1.184,−1.201,
−1.207 forβ = 0.2, 0.1, 0.05, 0.01, respectively, violating (54) from below. For
β larger than 0.2 but close to it,Sβ already turns out to be too close to the critical
interval given in (54) to be relevant experimentally.
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3. CONCLUSION

We have derived explicit closed expressions for joint probability distributions
of photon polarizations correlations and for single photon polarization measure-
ment ofγ γ in e+e− annihilation, in flight, in two processes, in QED. The mere
fact that this quantum dynamical and ever reliable theory predicts a clear violation
of the Bell-like inequality (34)/(35) for both process and for several speeds, which
are nevertheless high enough, makes it interesting to carry out these experiments
for the annihilation of free e+e− in flight. Perhaps, such experiments may be easier
to carry out than those involved with positronium decay (Faraciet al., 1974; Kaday
et al., 1975) and we hope that this work will be of interest to both theoreticians
and experimentalists alike.
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